Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biosensors (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2259573

ABSTRACT

Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain's highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors' performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.


Subject(s)
Biosensing Techniques , Nanostructures , Catecholamines , Electrochemical Techniques , Neurotransmitter Agents
2.
Biosens Bioelectron ; 220: 114861, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2244685

ABSTRACT

We propose a label-free biosensor based on a porous silicon resonant microcavity and localized surface plasmon resonance. The biosensor detects SARS-CoV-2 antigen based on engineered trimeric angiotensin converting enzyme-2 binding protein, which is conserved across different variants. Robotic arms run the detection process including sample loading, incubation, sensor surface rinsing, and optical measurements using a portable spectrometer. Both the biosensor and the optical measurement system are readily scalable to accommodate testing a wide range of sample numbers. The limit of detection is 100 TCID50/ml. The detection time is 5 min, and the throughput of one single robotic site is up to 384 specimens in 30 min. The measurement interface requires little training, has standard operation, and therefore is suitable for widespread use in rapid and onsite COVID-19 screening or surveillance.


Subject(s)
Biosensing Techniques , COVID-19 , Optical Devices , Humans , COVID-19/diagnosis , SARS-CoV-2 , Surface Plasmon Resonance
3.
Anal Chim Acta ; 1244: 340860, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2175682

ABSTRACT

In the context of globalization, individuals have an increased chance of being infected by multiple viruses simultaneously, thereby highlighting the importance of developing multiplexed devices. In addition to sufficient sensitivity and rapid response, multi-virus sensing techniques are expected to offer additional advantages including high throughput, one-time sampling for parallel analysis, and full automation with data visualization. In this paper, we review the optical, electrochemical, and mechanical platforms that enable multi-virus biosensing. The working mechanisms of each platform, including the detection principle, transducer configuration, bio-interface design, and detected signals, are reviewed. The advantages and limitations, as well as the challenges in implementing various detection strategies in real-life scenarios, were evaluated. Future perspectives on multiplexed biosensing techniques are critically discussed. Earlier access to multi-virus biosensors will efficiently serve for immediate pandemic control, such as in emerging SARS-CoV-2 and monkeypox cases.


Subject(s)
Biosensing Techniques , COVID-19 , Viruses , Humans , COVID-19/diagnosis , SARS-CoV-2 , Biosensing Techniques/methods , Pandemics , Electrochemical Techniques
4.
Biosensors (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2082215

ABSTRACT

The recent COVID-19 pandemic has caused tremendous damage to the social economy and people's health. Some major issues fighting COVID-19 include early and accurate diagnosis and the shortage of ventilator machines for critical patients. In this manuscript, we describe a novel solution to deal with COVID-19: portable biosensing and wearable photoacoustic imaging for early and accurate diagnosis of infection and magnetic neuromodulation or minimally invasive electrical stimulation to replace traditional ventilation. The solution is a closed-loop system in that the three modules are integrated together and form a loop to cover all-phase strategies for fighting COVID-19. The proposed technique can guarantee ubiquitous and onsite detection, and an electrical hypoglossal stimulator can be more effective in helping severe patients and reducing complications caused by ventilators.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnosis , SARS-CoV-2
5.
Encyclopedia of Sensors and Biosensors (First Edition) ; : 17-32, 2023.
Article in English | ScienceDirect | ID: covidwho-2060204

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging human-to-human infectious disease that broke out in early December 2019 and threatens global public health, causing widespread concern. This respiratory disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The development of rapid and reliable techniques for COVID-19 diagnosis is a significant step to prevent further infections. Combinations of genome sequencing, nucleic acid molecular testing, clustered regularly interspaced short palindromic repeats editing technology, antigen/antibody detection, and computed tomography imaging have been implemented to identify and screen COVID-19 infections. Moreover, other new diagnosis methods such as dried blood spots and biosensors are being developed and are summarized here. This manuscript reviews currently available methods for SARS-CoV-2 detection with the aim of helping researchers develop timely and effective technologies to detect this emerging virus and its variants.

6.
Sensors (Basel) ; 22(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1855753

ABSTRACT

Tests for SARS-CoV-2 are crucial for the mass surveillance of the incidence of infection. The long waiting time for classic nucleic acid test results highlights the importance of developing alternative rapid biosensing methods. Herein, we propose a fiber-optic biolayer interferometry-based biosensor (FO-BLI) to detect SARS-CoV-2 spike proteins, extracellular domain (ECD), and receptor-binding domain (RBD) in artificial samples in 13 min. The FO-BLI biosensor utilized an antibody pair to capture and detect the spike proteins. The secondary antibody conjugated with horseradish peroxidase (HRP) reacted with the enzyme substrate for signal amplification. Two types of substrates, 3,3'-diaminobenzidine (DAB) and an advanced 3-Amino-9-ethylcarbazole (i.e., AMEC), were applied to evaluate their capabilities in enhancing signals and reaching high sensitivity. After careful comparison, the AMEC-based FO-BLI biosensor showed better assay performance, which detected ECD at a concentration of 32-720 pM and RBD of 12.5-400 pM in artificial saliva and serum, respectively. The limit of detection (LoD) for SARS-CoV-2 ECD and RBD was defined to be 36 pM and 12.5 pM, respectively. Morphology of the metal precipitates generated by the AMEC-HRP reaction in the fiber tips was observed using field emission scanning electron microscopy (SEM). Collectively, the developed FO-BLI biosensor has the potential to rapidly detect SARS-CoV-2 antigens and provide guidance for "sample-collect and result-out on-site" mode.


Subject(s)
Biosensing Techniques , COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/diagnosis , Humans , Membrane Glycoproteins/chemistry , SARS-CoV-2 , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
8.
Biosens Bioelectron ; 204: 114054, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1739561

ABSTRACT

In this study, we report two fiber optic-biolayer interferometry (FO-BLI)-based biosensors for the rapid detection of SARS-CoV-2 neutralizing antibodies (NAbs) and binding antibodies (BAbs) in human serum. The use of signal enhancer 3,3'-diaminobenzidine enabled the detection of NAbs, anti-receptor binding domain (anti-RBD) BAbs, and anti-extracellular domain of spike protein (anti-S-ECD) BAbs up to as low as 10 ng/mL in both buffer and 100-fold diluted serum. NAbs and BAbs could be detected individually over 7.5 and 13 min, respectively, or simultaneously by prolonging the detection time of the former. The protocol for the detection of BAbs could be utilized for detection of the RBD-N501Y variant with equal sensitivity and speed. Results of the NAbs and the anti-RBD BAbs biosensors correlated well with those of the corresponding commercial assay kit. Clinical utility of the two FO-BLI biosensors were further validated using a small cohort of samples randomly taken from 16 enrolled healthy participants who received inactivated vaccines. Two potent serum antibodies were identified, which showed high neutralizing capacities toward RBD and pseudovirus. Overall, the rapid automated biosensors can be used for an individual sample measurement of NAbs and BAbs as well as for high-throughput analysis. The findings of this study would be useful in COVID-19 related studies in vaccine trials, research on dynamics of the immune response, and epidemiology studies.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715109

ABSTRACT

Cost-effective, rapid, and sensitive detection of SARS-CoV-2, in high-throughput, is crucial in controlling the COVID-19 epidemic. In this study, we proposed a vertical microcavity and localized surface plasmon resonance hybrid biosensor for SARS-CoV-2 detection in artificial saliva and assessed its efficacy. The proposed biosensor monitors the valley shifts in the reflectance spectrum, as induced by changes in the refractive index within the proximity of the sensor surface. A low-cost and fast method was developed to form nanoporous gold (NPG) with different surface morphologies on the vertical microcavity wafer, followed by immobilization with the SARS-CoV-2 antibody for capturing the virus. Modeling and simulation were conducted to optimize the microcavity structure and the NPG parameters. Simulation results revealed that NPG-deposited sensors performed better in resonance quality and in sensitivity compared to gold-deposited and pure microcavity sensors. The experiment confirmed the effect of NPG surface morphology on the biosensor sensitivity as demonstrated by simulation. Pre-clinical validation revealed that 40% porosity led to the highest sensitivity for SARS-CoV-2 pseudovirus at 319 copies/mL in artificial saliva. The proposed automatic biosensing system delivered the results of 100 samples within 30 min, demonstrating its potential for on-site coronavirus detection with sufficient sensitivity.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Gold/chemistry , Humans , SARS-CoV-2 , Surface Plasmon Resonance
10.
IEEE Sens J ; 21(13): 14569-14586, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1199619

ABSTRACT

Breathing rate monitoring is a must for hospitalized patients with the current coronavirus disease 2019 (COVID-19). We review in this paper recent implementations of breathing monitoring techniques, where both contact and remote approaches are presented. It is known that with non-contact monitoring, the patient is not tied to an instrument, which improves patients' comfort and enhances the accuracy of extracted breathing activity, since the distress generated by a contact device is avoided. Remote breathing monitoring allows screening people infected with COVID-19 by detecting abnormal respiratory patterns. However, non-contact methods show some disadvantages such as the higher set-up complexity compared to contact ones. On the other hand, many reported contact methods are mainly implemented using discrete components. While, numerous integrated solutions have been reported for non-contact techniques, such as continuous wave (CW) Doppler radar and ultrawideband (UWB) pulsed radar. These radar chips are discussed and their measured performances are summarized and compared.

SELECTION OF CITATIONS
SEARCH DETAIL